Operating Experience with Multiphase Meters at Who Dat and Delta House Fields

Xinglai Gong (LLOG), Richard Streeton (TechnipFMC)
Overview Who Dat and Delta House

• Who Dat current production: 24,000 STB/D, 55 MMSCF/D, 8,000 BWPD.
 – First oil 12/2011, first subsea MPM meters 9/2013
 – Current total wells: 10 (9 MPM meters)
 – Cumulative: 46 MMSTB oil, 82 BCF, 7.5 MMBBL Water

• Delta House Current rate: 92,000 STB/D, 200 MMSCF/D, 1,000 BWPD
 – First oil 4/2015, first subsea MPM meters 4/2015
 – Current total wells: 11 (10 MPM meters)
 – Cumulative: 38 MMSTB oil, 94 BCF, 0.3 MMBBL Water

• Individual well production allocated using MPM meters going forward
Overview MPM Meter Technology

• Multiphase & Wetgas (Dual Mode)
• Venturi – Total mass flow
• 3D Broadband – tomographic measurement
 – Phase fractions of oil, gas and water
 – Gas-volume-fraction (GVF)
 – Water-liquid-ratio (WLR)
 – Liquid/gas distribution within the pipe
• Gamma densitometer – mixture density
• Salinity probe – water salinity
Who Dat

Status: 6 flowlines, 4 manifolds, 10 wells, 7 producing horizons
Fluid type: from wet gas to 16 API oil and everything in-between
Delta House

Status: 8 flowlines, 6 manifolds, 11 wells, 6 producing horizons

Fluid type: condensate, volatile oil and black oil

Long term: exploration in the area will result in additional tie-backs
MPM Meter Installation

• Application Design
 – 3”; Duplex
 – 10 kpsi; -30F to 250 F
 – Beta ratio 0.55 or 0.7

• Installation
 – Installed on manifold side in jumpers
 – Flanged in jumpers (no welding), preservation of meter & electronic
 – vertical upwards flow
 – Novolastic insulation around dP taps
 – ROV protection cage
Allocation Philosophy

• Well production is allocated from LACT and sales gas meters directly back to standard oil and gas readings from subsea MPMs.

• Test separator not used for tier 1 allocation

• Test MPMs every 180 days (Delta House) or 360 days (Who Dat) by comparing with separator readings
Uncertainty Breakdown

Each uncertainty ‘element’ must be evaluated in setting acceptance criteria.

Meter
- Technology, Flow Models, software, Flow loop testing

Configuration
- PVT quality, EoS models, comingling, reservoir changes, EoR

Conversion
- PVT quality, production process, comingling
PVT Configuration Challenges

• Conversion from MPM measured gas rates to LACT/sales gas standard condition

• Differences between PVT configuration (look-up tables) in MPM vs actual fluid composition

• Single stage flash (MPM) to model multi-stage flash separation (DH)
Allocation Benefits vs. Conventional Well Test

• Daily test data yield better accuracy
 – MPM sensitive to small daily changes while conventional well test are carried out weekly or monthly

• Reduced downtime
 – No need to put each individual well to the test separator every 1-3 months (by either shutting-in wells in the same flowline or moving wells into the other flowline)
 – No need to perform well tests when the well is on rapid decline or with choke changes
Reservoir Benefits: GOR sensitive wells

• In 2 wells at Who Dat, GOR is sensitive to withdrawal rate

• Simple trending/monitoring of GOR led to flow rate adjustments to conserve energy in the reservoir

• One of the 2 wells was producing 6000 STB/D and 25 MMSCF/D, causing a 100 psi/month decline. After reducing the rate to 3000 STB/D, gas rate reduced to 8 MMSCF and pressure decline was eliminated

• By reducing the rate, simulation projected an increase of 5+ MMSTB reserves
GOR Sensitive Well Examples

Copyright 2017, Letton Hall Group. This paper was developed for the UPM Forum, 22 – 23 February 2017, Houston, Texas, U.S.A., and is subject to correction by the author(s). The contents of the paper may not necessarily reflect the views of the UPM Forum sponsors or administrator. Reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of the Letton Hall Group is prohibited. Non-commercial reproduction or distribution may be permitted, provided conspicuous acknowledgment of the UPM Forum and the author(s) is made. For more information, see www.upmforum.com.
Reservoir Benefit: Co-mingled Wells

- MPMs allow accurate determination of production distribution between co-mingled producing zones
- Able to use the operational flexibility of the smart sleeves to well test each zone individually
- Two particular wells where production is co-mingled and each well produces from 2 different reservoirs
- With better understanding of the reservoirs we were able to increase booked reserves by 2 MMSTB

<table>
<thead>
<tr>
<th></th>
<th>Reservoir A</th>
<th>Both</th>
<th>Reservoir A</th>
<th>Reservoir B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>measured</td>
<td>measured</td>
<td>calc</td>
<td>calc</td>
</tr>
<tr>
<td>SIBHP</td>
<td>8013</td>
<td>8015</td>
<td>8013</td>
<td>6476</td>
</tr>
<tr>
<td>FBHP</td>
<td>6491</td>
<td>5720</td>
<td>5716</td>
<td>5717</td>
</tr>
<tr>
<td>dP</td>
<td>1522</td>
<td>2295</td>
<td>2297</td>
<td>759</td>
</tr>
<tr>
<td>Oil Rate</td>
<td>2102</td>
<td>7000</td>
<td>3172</td>
<td>3828</td>
</tr>
<tr>
<td>Gas Rate</td>
<td>1.19</td>
<td>5.61</td>
<td>1.80</td>
<td>4</td>
</tr>
<tr>
<td>Water Rate</td>
<td>1640</td>
<td>3136</td>
<td>2475</td>
<td>661</td>
</tr>
<tr>
<td>Oil PI</td>
<td>1.4</td>
<td>3.1</td>
<td>1.4</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Reservoir Benefit: Reservoir Modeling

- Continuous WLR and GOR data are key history match parameters that are not very accurate using conventional data testing.
- More reliable data improves the quality of the reservoir models and so enhance the accuracy of production forecast and decision making.
Operational Benefit: Production Optimization

• Before the use of MPM’s, well optimization required a determination of productivity based on the last well test to provide a target downhole flowing pressure to reach a desired production rate.

• Because of reservoir depletion, new target downhole flowing pressures were required weekly in order to maintain target production rates.

• MPM is now used as the primary rate measurement in the optimization process. An MPM rate target can sometimes be appropriate for months.

• The meters are also used as the primary rate measurement in well ramp-up where the meter combined with the DHPT gauge are monitored through the ramp-up.
Operational Benefit: Surface Meters

• MPM was used as a diagnostic tool to help identify one separator oil reading that was 40% lower than reality in Delta House and one separator oil reading that was 25% too high than reality in Who Dat
Challenge: Meter Sizing

- All of our meters in service were designed to have a 0.7 Venturi beta ratio based on initial estimates.

- Some of the wells have declined to less than 1000 STB/D liquid, which is below the minimum pressure differential (dP).

- MPM of those wells can read a positive rate when the wells are shut in and zero rate when the wells are flowing when the differential pressure is less than 50 millibar (minimum operating differential pressure).

- dp cut-offs were reduced to ‘expand’ meter envelope outside of normal measurement range (operation as low as 10 mbar).

- Where possible, it is recommended to account for the entire life of the well in order to optimize the MPM sizing. In some cases, 0.55 beta meters may work.
Challenge: Water Properties for High WLR Wells

• Water properties play a significant role to oil and water readings in water continuous wells (WLR > 50%), water salinity ranges from 30,000 ppm to 150,000 ppm.

• Failing to put correct water conductivity / water density in the meter can result significant uncertainties when dp is less than 50 millibar.

• Integrated MPM meter salinity probe has been used to actively compensate changing water properties in water continuous flow.
Challenge: Double Choke Problem

• The standard oil, gas and water readings at the MPM depend upon the pressure and temperature at the meter

• When the meter condition changes, even though actual rate is constant (no change in drawdown), the standard oil and gas readings could change.

• Most of time, this happened when we have a subsea choke and a surface choke, so we called it double choke problem
MPFM Value: Accuracy, Diagnostics, Reservoir Surveillance

• Accuracy
 – All 19 meters in service average 5% uncertainty with validation and occasional calibration.
 – Measured water flow rates consistent with overboard water volumes. Identifies water source in intelligent and commingling subsea wells without shut-in’s.

• Diagnostics
 – Meters are used as tool to QC sales gas and separator meter measurements
 – In-situ capabilities for trouble shooting=>QC on meter hardware, software and PVT configurations
 – Use recalculation tool to test updated field configurations prior to calibration
 – Remote access for raw data retrieval, diagnostics, updates. No offshore personnel required even for commissioning meters for the first time.

• Reservoir Surveillance
 – Continuous MPM readings are valuable tools to identify rate sensitive wells as we can then enhance ultimate recovery by reducing production rate
 – MPM’s can identify the production ratio and fluid phase behavior between different zones in commingled wells when the sleeves are shifted to enhance understanding of commingling zones and increase ultimate recovery
 – MPM’s can provide valuable water cut and gas oil ratio behavior for reservoir modeling to enhance model quality and reliability for better decision making